linhkienphukien.vn

Xói Mòn trong Hệ Thống Piping: Nguyên Nhân và Cách Xử Lý

Admin Song Toàn
Ngày 29/03/2024

Hôm nay, tôi sẽ giới thiệu với bạn một hiện tượng không mong muốn nhưng thường xảy ra trong hệ thống đường ống của ngành sản xuất Dầu và Khí (Oil & Gas), đó là quá trình xói mòn, hay còn được gọi là Erosion trong tiếng Anh.

Tương tự như hậu quả của quá trình ăn mòn (Corrosion), xói mòn cũng dẫn đến giảm chiều dày của đường ống và phụ kiện, gây ra các vết nứt và lỗ hổng trên bề mặt của chúng. Tuy nhiên, cơ chế của ăn mòn và xói mòn là hoàn toàn khác nhau. Trong bài viết này, tôi sẽ giới thiệu về xói mòn trong hệ thống đường ống.\

 

Giới Thiệu

Xói mòn là một quá trình phức tạp, bị ảnh hưởng bởi nhiều yếu tố và thay đổi nhỏ trong điều kiện hoạt động có thể gây ra ảnh hưởng lớn đến quá trình xói mòn và dẫn đến những hậu quả đáng kể. Điều này dẫn đến thực tế rằng tốc độ xói mòn có thể nhanh chóng trong một hệ thống khai thác nhất định, trong khi lại rất chậm trong một hệ thống tương tự. Phát hiện xói mòn trong quá trình tiến triển trong hệ thống đường ống cũng là một thách thức lớn, vì các nhà điều hành hiếm khi có thông số đo lường về tình trạng bên trong của hệ thống đường ống.

Hình 1: Xói Mòn Elbow

Quá trình Xói Mòn Trong Khai Thác Dầu Khí

Trong quá trình khai thác dầu khí


Chất lưu trong giếng là một hỗn hợp đa pha của nhiều thành phần khác nhau, bao gồm:

  • Hydrocarbon dạng lỏng: dầu, condensate, bitumen
  • Hydrocarbon dạng rắn: wax, hydrate
  • Hydrocarbon dạng khí
  • Các chất khí khác: H2S, CO2, Nitrogen
  • Nước (có muối hòa tan)
  • Cát và proppant (vật liệu sử dụng trong quá trình nứt vỉa thủy lực)


Các cơ chế gây ra xói mòn bao gồm:

 

  • Xói mòn do hạt rắn (Particulate Erosion)
  • Xói mòn do giọt chất lỏng (Liquid Droplet Erosion): thường gặp trong hệ thống wet gas và dòng nhiều pha.
  • Xói mòn do ăn mòn (Erosion-Corrosion): xảy ra khi có dung dịch ăn mòn hoặc thành phần kim loại di chuyển trong dung dịch.
  • Xâm thực (Cavitation)


Trong số các cơ chế này, xói mòn do hạt rắn là phổ biến nhất trong hệ thống đường ống trong ngành dầu khí. Do đó, bài viết này sẽ tập trung vào mô tả quá trình này. Tuy nhiên, các cơ chế khác cũng có thể trở thành tác nhân chính nếu điều kiện thích hợp.
Dù cơ chế xói mòn là gì, các bộ phận dễ bị tổn thương nhất trong hệ thống đường ống thường là:

 

  • Các điểm thay đổi đột ngột trong hướng dòng chảy
  • Các vùng có vận tốc dòng chảy cao do lưu lượng lớn
  • Các vùng có vận tốc dòng chảy cao do hạn chế tiết diện


Các thành phần và đường ống ở phía trước của Separator, chịu tải dòng nhiều pha, thường dễ bị xói mòn do hạt rắn, ăn mòn và giọt chất lỏng. Mức độ xói mòn của chúng phụ thuộc vào thiết kế và điều kiện hoạt động. Dưới đây là một số thành phần dễ bị xói mòn nhất:

 

    • Van Choke
    • Các vùng có tiết diện giảm đột ngột
    • Các van đóng một phần, van kiểm tra và van không phải full bore
    • Các cút
    • Các mối hàn và ống không phù hợp với tiết diện flange
    • Reducer
    • Target Tee
    • Ống thẳng


Xói Mòn Do Hạt Rắn (Particulate Erosion)

Cơ chế xói mòn này đã được nghiên cứu và hiểu rõ, từ đó chúng ta đã phát triển công cụ có thể dự đoán tốc độ xói mòn.
Các yếu tố ảnh hưởng tới tốc độ xói mòn do hạt rắn bao gồm:

Lưu Lượng Cát Trong Hệ Thống Đường Ống


Thường thì, khi một giếng mới được khai thác, lượng cát và vật liệu proppant (sử dụng trong quá trình nứt vỉa thủy lực) sẽ tạo ra một lượng lớn. Sau đó, lượng cát mới này được duy trì ở mức thấp trước khi tăng lên lại khi giếng trở nên "cũ" và tình trạng vỉa kém đi. Đường ống vận chuyển khí thường dễ bị xói mòn hơn so với đường ống vận chuyển chất lỏng vì lưu chất trong đường ống khí có vận tốc cao hơn (>10 m/s).Trong hệ thống wet gas, cát cũng có thể tập trung trong pha lỏng và truyền qua đường ống, gây ra xói mòn, đặc biệt trong hệ thống xảy ra slugging có thể tăng tốc độ xói mòn.

"Nếu dòng chảy không ổn định, chất lượng cát có thể tích tụ khi dòng chảy thấp và sau đó bị xô đi khi dòng chảy tăng trở lại, làm tăng nồng độ cát trong lưu chất và tăng tốc độ xói mòn cục bộ trong hệ thống đường ống."


Vận Tốc, Độ Nhớt và Tỉ Trọng của Lưu Chất


Tốc độ xói mòn chủ yếu phụ thuộc vào tốc độ va chạm của các hạt, thường gần bằng vận tốc lưu chất trong hệ thống đường ống. Do đó, xói mòn thường xảy ra nhanh nhất khi vận tốc lưu chất đạt giá trị cao nhất. Một thay đổi nhỏ trong vận tốc của lưu chất có thể gây ra sự gia tăng đáng kể trong tốc độ xói mòn.


Trong lưu chất có độ nhớt cao, các hạt có xu hướng bị cuốn theo dòng chảy hơn là va chạm vào thành ống. Ngược lại, trong lưu chất có độ nhớt thấp, các hạt có xu hướng di chuyển theo đường thẳng và va chạm với thành ống nhiều hơn. Do đó, xói mòn do hạt rắn thường xảy ra nhiều hơn trong các dòng khí, một phần là do khí có độ nhớt và tỉ trọng thấp, và một phần là do các hệ thống khí thường hoạt động với vận tốc cao hơn.


Kích Thước, Hình Dạng và Độ Cứng của Hạt


Kích thước của hạt ảnh hưởng đến tốc độ xói mòn vì nó xác định số lượng hạt va chạm vào thành ống. Với các hạt rất nhỏ (khoảng 10 micron, 1 micron = 10-3 mm), chúng ít khi va chạm vào thành ống. Ngược lại, các hạt lớn (từ 1mm trở lên) có xu hướng di chuyển thẳng và va chạm với thành ống khi dòng chảy thay đổi hướng.
Có nhiều nghiên cứu đã chỉ ra rằng các hạt có độ cứng cao gây ra xói mòn nhiều hơn so với các hạt có độ cứng thấp. Ngoài ra, các hạt có hình dạng góc cạnh cũng gây ra xói mòn nhiều hơn so với các hạt tròn.


Xói Mòn Ở Elbow

Hình 2: Mô tả đường di chuyển của các hạt có kích thước và khối lượng khác nhau qua elbow

Hình 2 có thể đại diện cho trường hợp hạt có kích thước cố định trong lưu chất với các đặc tính khác nhau. Hình 2.a thể hiện hạt trong chất lỏng có độ nhớt cao, đặc và hình 2.c thể hiện hạt trong môi trường có độ nhớt thấp, mật độ thấp.

Hình 3: Xói mòn ở elbow

Hình 3 mô tả các vùng có thể xảy ra xói mòn bên trong elbow. Chúng ta thấy rằng, khu vực chính bị xói mòn là nơi lưu chất thay đổi hướng. Ngoài ra, còn tồn tại một số vùng xói mòn thứ cấp xảy ra do lưu chất chảy rối sau đó. Xói mòn ở elbow có thể gây ra tổn thất kinh tế lớn vì phải thường xuyên thay thế elbow.


Vấn đề này có thể được giải quyết bằng cách sử dụng Target Tee (còn được gọi là Blind Tee hoặc Cushion Tee). Target Tee có thể tạo ra một "sand plug" tại nhánh blind end của tee. Khi các hạt rắn di chuyển tới tee, chúng có xu hướng va chạm với sand plug thay vì với thành của tee, giảm đáng kể hiện tượng xói mòn. Tuy nhiên, plug này cũng ngăn chặn các chất ức chế ăn mòn tiếp xúc với tee, có thể làm tăng hiện tượng ăn mòn điện hóa. Ngoài ra, phần dead leg của target tee được thiết kế với một lớp vật liệu mềm (thường là chì) để hấp thụ năng lượng từ các tác động của hạt rắn.

Hình 4: Target tee

 

Các Giải Pháp

Dưới đây là một số cách được sử dụng để hạn chế xói mòn trong hệ thống piping:


Giảm Lưu Lượng Khai Thác

Cách này giúp giảm cả lượng cát được tạo ra và di chuyển vào lòng giếng cũng như làm giảm vận tốc dòng trong hệ thống piping. Tuy nhiên, phương pháp này có ảnh hưởng lớn tới tính kinh tế của dự án khai thác dầu khí.


Thiết Kế Hệ Thống Piping Tối Ưu

Piping nên được thiết kế để làm giảm vận tốc dòng và tránh thay đổi hướng đột ngột (ví dụ như tại elbow, reduce bore valve,…). Việc sử dụng full bore valve và target tee (thay cho elbow) có thể giảm xói mòn. Slug flow có thể gây xói mòn, do đó cần thiết kế các thiết bị slug catcher và drain hợp lý để loại bỏ slug trong lưu chất.
Thông thường, các loại ống dày thường được sử dụng để tăng tuổi thọ của hệ thống piping. Tuy nhiên, chúng ta cần lưu ý rằng khi tăng wall thickness, đường kính trong của ống sẽ giảm, làm tăng vận tốc dòng, dẫn tới tốc độ xói mòn tăng, đặc biệt là đối với các ống kích thước nhỏ.


Sử Dụng Các Thiết Bị Loại Trừ và Tách Cát

Các thiết bị như downhole sand screen và gravel pack thường được sử dụng để ngăn chặn cát đi vào giếng khai thác. Tuy nhiên các thiết bị này làm tăng sức cản dòng chảy vào giếng và do đó ảnh hưởng đến năng suất khai thác của giếng.
Để bảo vệ hệ thống piping ở downstream wellhead, chúng ta có thể sử dụng Hydrocyclone và các loại desander khác. Cũng giống như các thiết bị ngăn chặn cát đi vào lòng giếng, việc sử dụng các thiết bị tách cát có thể tác động tiêu cực tới tính kinh tế. Nó cũng làm tăng số lượng đường ống và do đó làm tăng sự tiếp xúc của hệ thống piping với các vấn đề xói mòn.


Sử Dụng Các Thiết Bị Giám Sát (Sand Monitor)

Một số thiết bị sand monitor được sử dụng ở downhole trong các production tubing (ống khai thác). Tuy nhiên, thông thường các thiết bị sand monitor được đặt ở topside, gồm 2 loại chính:

  • Loại Insertion Sand Probe: loại này sử dụng đầu thăm dò xuyên qua thành ống để tiếp xúc trực tiếp với dòng lưu chất.

Hình 5: Insertion Sand probe

  • Loại Clamped Sand Probe: đây là thiết bị không xâm nhập được kẹp vào thành ống.

Hình 6: Clamped Sand probe

Như vậy, qua bài viết này, mình đã giới thiệu về quá trình xói mòn trong hệ thống piping.


Bạn có thể xem bài viết của Song Toan (STG)., JSC tại:

 


Chúc bạn có những trải nghiệm tuyệt vời với sản phẩm của Song Toàn (STG).

Valves và Ứng Dụng Công Cụ Kaizen Trong Cải Tiến Liên Tục

Admin Song Toàn
|
Ngày 19/06/2024

Câu nói "Có thêm một ngày là ta quyết trân quý và sử dụng ngày đó có hiệu quả" nhấn mạnh tầm quan trọng của việc sử dụng thời gian một cách khôn ngoan. Thời gian là tài sản quý giá nhất mà mọi người đều có như nhau, không phân biệt giàu nghèo, giới tính hay tuổi tác. Sức mạnh của thời gian nằm ở việc bạn sử dụng nó như thế nào.   Áp Dụng Kaizen Mỗi Ngày Kaizen, công cụ cải tiến liên tục của người Nhật, có thể áp dụng không chỉ trong các công ty lớn mà còn trong cuộc sống hàng ngày của bạn. Cải thiện 1% mỗi ngày sẽ mang lại kết quả ấn tượng theo thời gian. Hãy làm phép tính đơn giản: Cải thiện 1% mỗi ngày: 1.01^365 ≈ 37.78 Tệ hơn 1% mỗi ngày: 0.99^365 ≈ 0.0255 Sự khác biệt giữa hai lựa chọn này sau một năm là rất lớn, cho thấy sức mạnh của những thay đổi nhỏ mỗi ngày. Giới Thiệu Về Valve Valve là một thiết bị cơ khí quan trọng, dùng để điều khiển lưu lượng và áp suất của lưu chất trong hệ thống ống. Chúng có bốn chức năng chính: Đóng – mở dòng chảy Điều tiết lưu lượng Chống chảy ngược Điều chỉnh, tăng giảm áp Lịch Sử Ra Đời của Valve Valve đã xuất hiện từ thời đế chế La Mã năm 25 sau CN, sử dụng trong hệ thống dẫn nước. Vào thế kỷ 18, khi động cơ hơi nước ra đời, valve được cải tiến để chịu được áp suất lớn hơn. Đến năm 1890, áp suất cao nhất của valve là 200 psi. Đầu thế kỷ XX, valve thép ra đời và tiếp tục phát triển trong Thế Chiến II về áp suất, vật liệu và khả năng chống ăn mòn. Hiện nay, valve có thể đáp ứng đầy đủ nhu cầu của con người và sẽ còn phát triển hơn nữa trong tương lai. Cấu Tạo và Phân Loại Valve Valve thường gồm 8 bộ phận chính: Valve Body: Thân valve, chứa đựng tất cả các bộ phận bên trong. Valve Bonnet: Nắp valve, bảo vệ các bộ phận bên trong. Valve Trim: Các bộ phận bên trong valve, bao gồm đĩa, ghế và thân van. Valve Disk: Đĩa valve, điều khiển dòng chảy. Valve Seat: Ghế valve, nơi đĩa valve ngồi và tạo ra sự kín khít. Valve Stem: Thân valve, kết nối với bộ điều khiển. Valve Packing: Gioăng kín, ngăn chặn rò rỉ từ thân valve. Valve Actuator: Bộ điều khiển valve, có thể là tay quay, động cơ điện hoặc khí nén. Việc áp dụng Kaizen để cải thiện bản thân mỗi ngày là một chiến lược hiệu quả. Bạn đã nắm sơ bộ lịch sử ra đời của valve, định nghĩa, chức năng, phân loại và các bộ phận chính của valve. Hẹn gặp lại bạn trong các chia sẻ cụ thể về từng loại valve sau. Bạn có thể xem bài viết của Song Toan (STG)., JSC tại: linhkienphukien.vn phukiensongtoan.com songtoanbrass.com Chúc bạn có những trải nghiệm tuyệt vời với sản phẩm của Song Toàn (STG).

Xem thêm

Giải Mã Bí Ẩn Giãn Nở Nhiệt: Bảo Vệ Hệ Thống Đường Ống Hiệu Quả

Ha Tram
|
Ngày 29/05/2024

Hệ thống đường ống cần linh hoạt để hấp thụ sự giãn nở vì nhiệt, nếu không sẽ gây ra ứng suất lớn và ảnh hưởng đến hệ thống. Hai giải pháp thường được sử dụng để giải quyết vấn đề này là Expansion Joint và Expansion Loop. Expansion Joint Cấu Tạo: Bao gồm nhiều bộ phận như Tube, Cover, Fabric Reinforcing, Metal Reinforcing, Retaining ring, Mating flange và Control Rod. Hoạt Động: Hấp thụ sự giãn nở dọc trục bằng cách nén và kéo giãn các thành phần bên trong. Ưu Điểm: Tiết kiệm không gian, chống rung động. Nhược điểm: Chi phí đầu tư và bảo trì cao hơn, rủi ro rò rỉ. Ứng Dụng: Không gian hạn chế, chống rung động (khu vực ống khói, máy bơm). AA B B C C Expansion Loop Cấu Tạo: Gồm một đoạn ống uốn cong theo hình dạng vòng cung hoặc chữ S. Hoạt Động: Hấp thụ sự giãn nở dọc trục bằng cách thay đổi hình dạng của đoạn vòng. Ưu Điểm: Chi phí đầu tư và bảo trì thấp hơn, ít rủi ro rò rỉ. Nhược Điểm: Chiếm nhiều diện tích hơn. Ứng Dụng: Không gian rộng rãi, ưu tiên chi phí thấp. D D Lựa Chọn Giải Pháp Expansion Joint: Phù hợp khi: Không gian hạn chế, cần chống rung động, áp suất vận hành cao, rủi ro rò rỉ thấp. Expansion Loop: Phù hợp khi: Không gian rộng rãi, ưu tiên chi phí thấp, rủi ro rò rỉ thấp, không cần chống rung động Lưu Ý: Việc lựa chọn giải pháp cần dựa trên nhiều yếu tố như: kích thước đường ống, áp suất vận hành, nhiệt độ vận hành, loại lưu chất, môi trường xung quanh, v.v. Cần tính toán chính xác độ dài của Expansion Loop để đảm bảo hiệu quả hoạt động. Nên tham khảo ý kiến chuyên gia để lựa chọn giải pháp phù hợp nhất cho từng dự án cụ thể. Expansion Joint và Expansion Loop là hai giải pháp hiệu quả để giải quyết vấn đề giãn nở nhiệt trong hệ thống đường ống. Việc lựa chọn giải pháp phù hợp cần dựa trên các yếu tố kỹ thuật và yêu cầu cụ thể của từng dự án. Bạn có thể xem bài viết của Song Toan (STG)., JSC tại: linhkienphukien.vn phukiensongtoan.com songtoanbrass.com Chúc bạn có những trải nghiệm tuyệt vời với sản phẩm của Song Toàn (STG).

Xem thêm

Stub-In và Stub-On: Khác Biệt Nào Quan Trọng ?

Ha Tram
|
Ngày 22/05/2024

Stub-in và Stub-on là hai phương pháp phổ biến để kết nối ống nhánh vào đường ống chính, thường được sử dụng khi kích thước ống nhánh nhỏ hơn hoặc bằng 1 kích thước so với ống chính. Tuy nhiên, chúng có một số điểm khác biệt về cấu tạo, ưu điểm, nhược điểm và ứng dụng:   Cấu Tạo Stub - In Và Stub - On Stub-in:Ống nhánh được cắt vát và mài nhọn, sau đó được lắp trực tiếp vào bên trong lòng ống chính. Mối hàn được thực hiện bao quanh toàn bộ chu vi của ống nhánh, tạo ra một kết nối chắc chắn và kín khít. Stub-on: Ống nhánh được cắt vuông góc với trục của ống chính và được đặt bên ngoài.exclamationMối hàn chỉ được thực hiện ở mặt ngoài của ống nhánh, tạo ra một kết nối đơn giản hơn.   Ưu điểm Stub - In Và Stub - On Chung: Cả hai phương pháp đều chỉ cần một mối hàn, tiết kiệm thời gian và chi phí thi công so với sử dụng Tee fitting, cần ba mối hàn.expand_more Thiết kế nhỏ gọn, tiết kiệm không gian lắp đặt. Stub-in: Độ bền cao hơn do mối hàn bao quanh toàn bộ chu vi ống nhánh. Chịu được áp suất cao hơn và ứng dụng trong điều kiện khắc nghiệt hơn.exclamation   Nhược điểm Stub - In Và Stub - On Chung: Yếu hơn so với các phương pháp kết nối khác như hàn đối đầu hoặc hàn socket. Cần kiểm tra kỹ mối hàn để đảm bảo độ kín khít và an toàn. Stub-in: Khó thi công hơn do cần cắt vát và mài nhọn ống nhánh. Mối hàn có thể ảnh hưởng đến dòng chảy lưu chất nếu không thực hiện cẩn thận. Ứng dụng Stub - In Và Stub - On Stub-in: Thích hợp cho các đường ống quan trọng, chịu áp suất cao, hoặc hoạt động trong điều kiện khắc nghiệt. Sử dụng phổ biến trong hệ thống đường ống hóa chất, dầu khí, nhà máy điện,... Stub-on: Thích hợp cho các đường ống có áp suất thấp, lưu lượng thấp, hoặc không yêu cầu độ bền cao. Sử dụng phổ biến trong hệ thống đường ống nước, hệ thống tưới tiêu,... Lưu ý: Cả hai phương pháp Stub-in và Stub-on đều cần tuân thủ các yêu cầu trong ASME B31.3 để đảm bảo an toàn và hiệu quả. Việc lựa chọn phương pháp kết nối phù hợp phụ thuộc vào nhiều yếu tố như kích thước ống, áp suất, nhiệt độ, lưu chất, điều kiện vận hành,...   Stub-in và Stub-on là hai lựa chọn phổ biến cho việc kết nối ống nhánh vào đường ống chính. Mỗi phương pháp có ưu điểm và nhược điểm riêng, do đó, việc lựa chọn phương pháp phù hợp cần dựa trên các yếu tố kỹ thuật và yêu cầu cụ thể của từng ứng dụng.   Bạn có thể xem bài viết của Song Toan (STG)., JSC tại: linhkienphukien.vn phukiensongtoan.com songtoanbrass.com Chúc bạn có những trải nghiệm tuyệt vời với sản phẩm của Song Toàn (STG).

Xem thêm

Các Thiết Bị Và Phụ Kiện Đặc Biệt Trên Hệ Thống Đường Ống

Admin PKST
|
Ngày 08/05/2024

Chào các bạn, trong bài viết này, Song Toàn sẽ giới thiệu với các bạn một số thành phần đặc biệt trên hệ thống đường ống. Ngoài các loại fitting, valve, và các piping component mà trước đây ST đã giới thiệu, còn có một số thành phần đặc biệt khác cũng rất quan trọng. Hôm nay, ST sẽ chia sẻ với các bạn về những thành phần đặc biệt này.   Bird Screen: Thành Phần Quan Trọng Bảo Vệ Đường Ống Xả Bird screen là một thành phần đặc biệt được lắp đặt tại điểm cuối của các đường ống xả trực tiếp ra môi trường không khí (open air – atmosphere). Những đường ống này thường là các đường xả vent của bồn và bể chứa trong hệ thống công nghệ, có áp suất tương đối nhỏ hoặc bằng áp suất khí quyển. 1. Cấu Tạo của Bird Screen Bird screen chủ yếu được cấu tạo từ một tấm lưới. Thiết kế lưới này phải đảm bảo một không gian mở đủ lớn để không cản trở lưu lượng xả của đường ống kết nối trực tiếp. Các yếu tố cần xem xét trong cấu tạo bird screen bao gồm: Kích thước lưới: Thường nhỏ để ngăn chặn sự xâm nhập của côn trùng, chim, chuột và các loại động vật khác. Kích thước tổng thể: Bird screen thường được thiết kế lớn hơn kích thước đường ống để không trở thành vật cản tại điểm cuối của đường ống. 2. Mục Đích Sử Dụng Bird screen được sử dụng với mục đích chính là bảo vệ đường ống xả bằng cách ngăn chặn: Côn trùng: Như ong, muỗi, bọ, có thể chui vào và làm tổ bên trong đường ống. Chim: Như chim sẻ, chim bồ câu, có thể bay vào và gây tắc nghẽn. Chuột: Hoặc các loài gặm nhấm khác có thể xâm nhập và làm tổ. Vật cản khác: Ngăn chặn các vật thể lạ khác có thể gây bít đường ống và làm mất an toàn cho bồn, bể. 3. Lợi Ích của Bird Screen Bảo vệ hệ thống: Tránh tắc nghẽn và giảm nguy cơ hư hỏng do vật cản từ bên ngoài. Duy trì an toàn: Đảm bảo hệ thống hoạt động ổn định, không bị gián đoạn bởi các tác nhân bên ngoài. Tăng tuổi thọ hệ thống: Giảm thiểu các sự cố và bảo trì, từ đó tăng tuổi thọ cho hệ thống bồn và bể chứa. Bird screen là một thành phần nhỏ nhưng rất quan trọng trong việc bảo vệ hệ thống xả của bồn và bể chứa. Việc lựa chọn và lắp đặt bird screen đúng cách sẽ giúp ngăn chặn các yếu tố bên ngoài xâm nhập, bảo vệ hệ thống và đảm bảo an toàn trong quá trình vận hành.   Flame Arrester: Thiết Bị Chống Cháy Ngược Flame arrester, hay còn gọi là thiết bị chống cháy ngược, là một thành phần quan trọng được lắp đặt gần các điểm cuối của đường ống xả vent. Flame arrester giúp ngăn chặn nguy cơ cháy nổ bằng cách ngăn chặn các tác nhân gây cháy từ bên ngoài xâm nhập vào bên trong hệ thống. 1. Vị Trí Lắp Đặt và Chức Năng Flame arrester thường được lắp trên các đường ống chứa khí hoặc hơi của các chất dễ cháy như hydrocarbon, diesel. Chất lưu thường đi qua flame arrester trước khi đến bird screen ở cuối đường ống. Mục đích chính của flame arrester là: Ngăn chặn tác nhân gây cháy: Các tác nhân như sấm sét, tia lửa, hoặc đám cháy bên ngoài có thể gây nguy hiểm cho bồn và bể chứa, cũng như các thiết bị trong hệ thống. Bảo vệ hệ thống: Ngăn ngừa nguy cơ cháy nổ bằng cách không cho ngọn lửa từ bên ngoài đi ngược vào trong hệ thống xả. 2. Cấu Tạo của Flame Arrester Flame arrester có cấu tạo đơn giản nhưng hiệu quả, bao gồm: Mặt bích kết nối (flange): Kết nối thiết bị với đường ống xả. Thân của flame arrester: Chứa thành phần chính là arrester element. Arrester element: Thành phần chính ngăn chặn ngọn lửa từ bên ngoài. Arrester element được tạo thành từ các khoan nhỏ li ti bằng kim loại chịu nhiệt cao. Các khoan nhỏ này có chức năng ngăn cản ngọn lửa và làm mát khí nóng trước khi chúng có thể xâm nhập vào bên trong hệ thống. 3. Nguyên Lý Hoạt Động Khi có ngọn lửa hoặc tác nhân gây cháy từ bên ngoài, arrester element sẽ: Ngăn chặn ngọn lửa: Các khoan nhỏ li ti trong arrester element làm nhiệm vụ ngăn cản trực tiếp ngọn lửa, không cho chúng xâm nhập vào hệ thống. Làm mát khí nóng: Giảm nhiệt độ của khí nóng, ngăn chặn sự lan truyền của ngọn lửa vào bên trong. 4. Lợi Ích của Flame Arrester Bảo vệ an toàn: Giảm nguy cơ cháy nổ, bảo vệ bồn, bể chứa và các thiết bị trong hệ thống. Độ bền cao: Được làm từ kim loại chịu nhiệt, flame arrester có độ bền cao và khả năng chịu nhiệt tốt. Dễ lắp đặt và bảo trì: Cấu tạo đơn giản giúp việc lắp đặt và bảo trì flame arrester dễ dàng và nhanh chóng. Flame arrester là một thiết bị quan trọng trong việc bảo vệ hệ thống xả của các bồn, bể chứa chất dễ cháy. Việc lắp đặt flame arrester đúng cách sẽ giúp ngăn chặn nguy cơ cháy nổ, bảo vệ an toàn cho hệ thống và đảm bảo quá trình vận hành được diễn ra ổn định.   Inline Mixer: Thiết Bị Trộn Hóa Chất Hiệu Quả Inline mixer là một thiết bị được sử dụng để trộn hóa chất trực tiếp trong dòng chảy của hệ thống đường ống. Thiết bị này thường được lắp đặt kèm với một đường bơm hóa chất, với điểm bơm hóa chất đặt phía trước (upstream) theo chiều dòng chảy so với inline mixer. 1. Cấu Tạo của Inline Mixer Inline mixer có cấu tạo khá đơn giản nhưng rất hiệu quả, bao gồm: Lá thép không gỉ: Thường được sử dụng do khả năng chống ăn mòn và độ bền cao. Rảnh xoắn trong lòng ống: Các lá thép được xếp lại tạo thành những rảnh xoắn, giúp thay đổi đặc tính dòng chảy từ liên tục sang rối. 2 Nguyên Lý Hoạt Động Khi lưu chất (chất lỏng hoặc khí) đi qua inline mixer, các rảnh xoắn trong lòng ống tạo ra dòng chảy rối, giúp: Tăng cường trộn hóa chất: Hóa chất được bơm vào trước inline mixer sẽ được trộn đều nhờ dòng chảy rối, đảm bảo hòa tan nhanh chóng và hiệu quả. Ngăn chặn phân lớp: Dòng chất lưu không bị phân lớp trong quá trình di chuyển, đảm bảo tính đồng nhất của hỗn hợp. 4. Lợi Ích của Inline Mixer Hiệu quả trộn cao: Inline mixer đảm bảo hóa chất được trộn đều và nhanh chóng vào dòng chảy chính. Thiết kế đơn giản: Cấu tạo dễ lắp đặt và bảo trì, không yêu cầu nhiều không gian. Vật liệu bền bỉ: Sử dụng thép không gỉ giúp tăng tuổi thọ và độ bền của thiết bị. 5. Ứng Dụng của Inline Mixer Inline mixer được sử dụng rộng rãi trong nhiều ngành công nghiệp, bao gồm: Ngành hóa chất: Trộn các loại hóa chất khác nhau vào dòng chảy chính. Ngành thực phẩm và đồ uống: Đảm bảo các thành phần được trộn đều. Ngành dầu khí: Hòa tan các chất phụ gia vào dòng dầu hoặc khí. Inline mixer là một thiết bị quan trọng trong việc trộn hóa chất vào dòng chảy chính của hệ thống đường ống. Với cấu tạo đơn giản nhưng hiệu quả, inline mixer giúp cải thiện quá trình hòa tan và ngăn chặn sự phân lớp của lưu chất, đảm bảo tính đồng nhất và hiệu quả trong quá trình vận hành.   Bạn có thể xem bài viết của Song Toan (STG)., JSC tại: linhkienphukien.vn phukiensongtoan.com songtoanbrass.com Chúc bạn có những trải nghiệm tuyệt vời với sản phẩm của Song Toàn (STG).

Xem thêm

Bolting: Chia Sẻ Kinh Nghiệm và Bài Học Hữu Ích

Admin Song Toàn
|
Ngày 04/04/2024

  Bu lông (Bolting), dường như là một phần nhỏ bé nhất trong hệ thống đường ống, nhưng thực tế, vai trò của chúng không hề nhỏ chút nào. Bu lông, đặc biệt là stud bolt, đóng vai trò quan trọng trong việc làm kín các mối nối mặt bích, kết nối các thiết bị và cố định các đường ống. Chúng là yếu tố quan trọng giúp hệ thống đường ống hoạt động một cách an toàn và hiệu quả. Một lỗi nhỏ trong quá trình sử dụng bu lông có thể gây ra những hậu quả nghiêm trọng cho toàn bộ hệ thống, đặc biệt là đe dọa đến tính mạng và sức khỏe của con người. Hôm nay, chúng ta sẽ cùng nhau tìm hiểu và rút ra những bài học quý báu từ các dự án EPC / EPCI liên quan đến bu lông. Điều này giúp mọi người hiểu sâu hơn về vấn đề này và nâng cao kiến thức về hệ thống đường ống.   Lựa Chọn Vật Liệu Bolting Việc lựa chọn vật liệu bolting là một phần quan trọng trong quá trình thiết kế hệ thống đường ống, và nó phụ thuộc vào nhiều yếu tố như đặc tính của chất lưu chất, vật liệu của đường ống, yêu cầu kỹ thuật, và yêu cầu về môi trường làm việc. Dưới đây là một số loại vật liệu bolting phổ biến được sử dụng trong các dự án và ứng dụng khác nhau: ASTM A193 Gr. B7 / ASTM A194 Gr. 2H ASTM A193 Gr.B7M / ASTM A194-2HM ASTM A320 Gr. L7 / ASTM A194 Gr. 7 ASTM A320 Gr. L7M / ASTM A194 Gr. 7M ASTM A320 Gr. L7 / ASTM A194 Gr. 7L ASTM A320 Gr. L7M / ASTM A194 Gr. 7ML ASTM A453 Gr. 660 Class D / ASTM A453 Gr. 660 Class D ASTM A276 UNS S32760   Trong quá trình lựa chọn vật liệu bolting, cần phải tạo điều kiện cho sự hợp tác giữa kỹ sư vật liệu và kỹ sư piping để đảm bảo rằng vật liệu bolting được chọn đáp ứng được yêu cầu kỹ thuật và an toàn. Một số điểm cần lưu ý khi lựa chọn vật liệu bolting: Đơn giản hóa Cần phải tối giản hóa số lượng nhóm vật liệu bolting để tránh tình trạng quá nhiều loại bolt dẫn đến khó khăn trong quản lý và tăng chi phí mua sắm. Việc sử dụng các loại bolt có thể áp dụng cho nhiều loại vật liệu đường ống khác nhau là một phương pháp hiệu quả để giảm thiểu số lượng nhóm vật liệu bolting. Sự phối hợp Cần phối hợp chặt chẽ với kỹ sư vật liệu và chủ đầu tư để đảm bảo sự đồng thuận về vật liệu bolting được sử dụng. Việc này đặc biệt quan trọng khi sử dụng vật liệu bolting có thể áp dụng cho nhiều loại vật liệu đường ống khác nhau. Tối ưu hóa Cần cân nhắc các yếu tố kỹ thuật và kinh tế để chọn ra vật liệu bolting phù hợp nhất cho dự án. Việc này đòi hỏi sự đánh giá cẩn thận về hiệu suất, tính năng, và chi phí của từng loại vật liệu bolting. Thông qua sự hợp tác và cân nhắc kỹ lưỡng, việc lựa chọn vật liệu bolting sẽ đảm bảo tính an toàn và hiệu quả của hệ thống đường ống. Chiều Dài Của Bolting Chiều dài của bolting thường được xác định dựa trên kích thước tiêu chuẩn của bolt như trong ASME B16.5. Sau khi siết, bolt thường sẽ dư ra từ 1-2 ren ở cả hai đầu. Trong một số trường hợp: Độ dày của mặt bích không tuân thủ theo ASME B16.5 do các yếu tố thiết kế đặc biệt (như GRE, Pressure Safety Valve, Thermowell, transmitter, v.v...), dẫn đến việc phải điều chỉnh chiều dài của bolting. Với các bolt kích thước lớn (từ 1.1/8” trở lên), thường áp dụng phương pháp tensioning để siết bolt thay vì sử dụng hydraulic wrench torque. Để tensioner có thể chụp vào và kéo bolt lên, cần phải có một khoảng trống ren dư. Vì vậy, chiều dài của bolting cần phải bao gồm một khoảng extra bằng chiều cao của nut để tensioning. Ngoài ra, đầu socket cần phải có không gian để chụp vào nut để siết bolt, điều này cần được xem xét trong thiết kế để tránh khó khăn trong thi công và sửa chữa tại công trường sau này.   Chiều dài của bolting cần phải điều chỉnh linh hoạt, không nên ràng buộc trong một công thức cố định. Ví dụ, ở những vị trí mà flange và elbow được hàn trực tiếp vào nhau, việc cộng thêm chiều dài bolting một khoảng bằng chiều cao của nut có thể dẫn đến tình trạng clashing hoặc không thể lắp đặt hoặc rút bolt ra. Đặc biệt Ở các vị trí có insulation gasket, bolting dễ bị thiếu ren do chiều dày của các steel washer và insulation washer là lớn, khoảng 4mm. Cần phải chú ý đặc biệt ở các bolt joint có sử dụng gasket là insulation gasket. Ngoài ra, nếu insulation gasket được sử dụng ở các vị trí của pressure safety valve (PSV) mà bolting khác vật liệu với PSV, cần phải có insulation washer ở phía mặt bích của PSV. Tuy nhiên, việc này thường bị bỏ qua và dẫn đến tình trạng clashing giữa bolt và thân PSV, không thể lắp đặt insulation washer. Để tránh tình trạng bolting quá dài hoặc ngắn, cần thực hiện kiểm tra kỹ lưỡng, đặc biệt là với các bolt size lớn và trong không gian lắp đặt bolt 3D. Chiều dày của các thành phần mà bolting sẽ siết qua cũng cần được xem xét thông qua bản vẽ tổng quát (General Drawing). Vật Liệu Coating Cho Bolting   Trên thị trường, có hai loại coating phổ biến cho bolting là Zn plating + PTFE và Hot Dip Galvanized. Mỗi loại coating có ưu và nhược điểm riêng. Tuy nhiên, xu hướng thị trường cho thấy Zn plating + PTFE đang được ưa chuộng hơn. Điểm mạnh của phương pháp Zn Plating + PTFE là lớp Zn plating chống ăn mòn kết hợp với lớp PTFE giảm ma sát, giúp quá trình siết bolt trở nên dễ dàng hơn mà không cần sử dụng thêm phụ gia. Phương pháp Hot Dip Galvanized thường có độ ma sát cao, do đó cần phải yêu cầu nhà máy bôi thêm lớp lubricant để giúp việc siết bolt trở nên dễ dàng hơn. Trên đây là một số chia sẻ kinh nghiệm về bolting để bạn có thêm thông tin và lựa chọn phù hợp cho dự án của mình. Bạn có thể xem bài viết của Song Toan (STG)., JSC tại: linhkienphukien.vn phukiensongtoan.com songtoanbrass.com Chúc bạn có những trải nghiệm tuyệt vời với sản phẩm của Song Toàn (STG).  

Xem thêm

NHẬP THÔNG TIN KHUYẾN MÃI TỪ CHÚNG TÔI

Giỏ hàng