linhkienphukien.vn

Giới Thiệu về Nhựa Teflon (PTFE): Cấu Trúc và Phân Loại

Admin Song Toàn
Ngày 27/11/2023

Nhựa Teflon là gì? Cấu trúc, đặc tính của nhựa Teflon như thế nào? Ứng dụng nhựa Teflon trong việc làm kín van và trong các ngành công nghiệp? Tất cả sẽ được chúng tôi tổng hợp chi tiết qua bài viết dưới đây, mời các bạn theo dõi.

 

Nhựa Teflon (PTFE) Là Gì ?

Nhựa Teflon hay còn được viết tắt là PTFE và có tên đầy đủ là Polymer Polytetrafluoroethylen, được biết đến là Vua của ngành nhựa. Nhựa Teflon có thành phần hóa học chứa Flour (F) màu trắng ngà, dẻo và Cacbon (C) có đặc tính bền khi tiếp xúc với các tác nhân hóa học có tính ăn mòn như axit, bazo có nồng độ cao. Ngoài ra, nhựa Teflon còn được tạo ra bởi phản ứng trùng hợp gốc tự do của nhiều phân tử tetrafluoroethene với nhau. Nó hình thành một polymer với chuỗi lặp đi lặp lại của -(CF2-CF2)-).

  1. Đặc Điểm Chính:

    • Tên Hóa Học: Poli(tetrafluoroethylene) hay PTFE.

    • Công Thức Hóa Học: (-CF2-CF2-)n.

    • Loại Nhựa: Nhiệt dẻo, có đặc tính chống hoá chất và nhiệt độ cao.

  2. Tính Chất Cơ Bản:

    • Nhiệt Độ Sử Dụng: Mềm dẻo trong khoảng nhiệt độ rộng từ -190°C đến +300°C.

    • Độ Bền Kéo: Cao, trong khoảng 245 - 315 kg/cm2.

    • Hệ Số Ma Sát: Rất nhỏ.

    • Độ Bền Nhiệt: Cao, có thể chịu đến 400°C trước khi thăng hoa.

    • Không Nóng Cháy: Teflon không nóng cháy và phân huỷ chậm.

    • Khả Năng Dẫn Điện: Không dẫn điện.

  3. Ứng Dụng Phổ Biến:

    • Chất Dẫn Nhiệt: Sử dụng trong việc làm chất dẫn nhiệt trong các ứng dụng y tế và công nghiệp.

    • Vỏ Cách Điện: Được sử dụng để làm vỏ cách điện cho cáp và các thiết bị điện.

    • Tráng Phủ Chảo: Được sử dụng để tráng phủ lớp chống dính trên các bề mặt nấu nướng, chảo, và ổ nướng.

    • Ống và Vật Liệu Dẫn Nước: Sử dụng trong các ống và vật liệu dẫn nước với yêu cầu chống ăn mòn và chống dính.

    • Ứng Dụng Trong Y Học: Do tính chống hoá chất và không gây ảnh hưởng đối với sức khỏe, Teflon được sử dụng trong nhiều ứng dụng y học như ống dẫn và thiết bị y khoa.

  4. Ưu Điểm:

    • Kháng Hoá Chất: Teflon chống lại tác động của nhiều hoá chất.

    • Kháng Nhiệt Độ Cao: Có khả năng chịu nhiệt độ cao mà không thay đổi tính chất cơ bản.

    • Khả Năng Chống Dính: Tính chất chống dính làm cho nó phù hợp trong các ứng dụng nấu ăn và y tế.

    • Khả Năng Cách Điện: Teflon là một chất cách điện tốt.

Lưu Ý:

  • Sự kết hợp của tính chất chống dính, chống ăn mòn, và khả năng chịu nhiệt của Teflon làm cho nó trở thành một vật liệu rất đa dụng trong nhiều lĩnh vực.

  • Teflon được sản xuất từ clorofom qua các giai đoạn sau : 

CHCl3 +HF/SbF5> CHF2Cl 700 °C> CF2=CF2 peroxide> (-CF2-CF2-)n

 

Thuộc tính của Teflon

Công thức phân tử

(C2F4)n

Khối lượng riêng

2200 kg/m3

Điểm nóng chảy

600 K
327 °C

Điểm sôi

 

Độ dẫn nhiệt

0.25 W/(m·K)

 

Lịch Sử Hình Thành Nhựa Teflon (PTFE)

Nhựa Teflon (PTFE) là một phát minh quan trọng được đưa vào sử dụng vào những năm cuối thập kỷ 1930 và bắt đầu của thập kỷ 1940. Dưới đây là một cái nhìn chi tiết về lịch sử hình thành của nhựa Teflon:

  1. Năm 1938 - Phát Hiện Ngẫu Nhiên:

    • Ngày 6 tháng 4 năm 1938, nhà khoa học Roy J. Plunkett của hãng DuPont đang thực hiện các thử nghiệm với chất lỏng gốc fluoro. Trong quá trình làm sạch một lượng lớn chất này khỏi một lọ, ông phát hiện ra một lớp chất nhựa trắng không phản ứng với nhiều chất khác.

  2. Khám Phá Tính Chất Đặc Biệt:

    • Khi kiểm tra, ông Plunkett và đồng nghiệp của ông nhận ra rằng chất nhựa mới này có các đặc tính đặc biệt như không bám dính, không phản ứng với nhiều hóa chất, và có khả năng chịu nhiệt độ cao.

  3. Sự Phát Triển và Sản Xuất Thương Mại:

    • Sau phát hiện, DuPont bắt đầu tiến hành nghiên cứu và phát triển tiếp theo về chất nhựa này. Cuối cùng, vào năm 1946, nhựa Teflon (PTFE) được công ty Chemours, một chi nhánh của DuPont, đưa vào sản xuất hàng loạt và đặt vào thị trường.

  4. Ứng Dụng Ban Đầu và Phát Triển:

    • Ban đầu, Teflon được sử dụng trong các ứng dụng quân sự và công nghiệp do tính chất chống dính và chống ăn mòn. Tuy nhiên, theo thời gian, Teflon đã mở rộng ứng dụng của mình và trở thành một vật liệu chủ chốt trong nhiều lĩnh vực như nấu ăn, y học, và công nghiệp.

  5. Phổ Biến và Đổi Tên:

    • Nhựa Teflon nhanh chóng trở thành một trong những loại nhựa phổ biến và quan trọng nhất trên thế giới. Nó đã trở thành biểu tượng của vật liệu chống dính và có nhiều ứng dụng đa dạng. Tên "Teflon" đã trở thành một thương hiệu nổi tiếng và được sử dụng rộng rãi thay thế cho tên gốc là PTFE.

 

Thành Phần Cấu Tạo Nhựa Teflon (PTFE)

Nhựa Teflon (PTFE) là một polymer có cấu trúc đặc biệt, được tạo thành từ các đơn vị xây dựng có công thức C2F4, hay tetrafluoroethylene. Dưới đây là mô tả chi tiết về thành phần cấu tạo của nhựa Teflon:

  1. Tetrafluoroethylene (C2F4):

    • Tetrafluoroethylene là một loại khí không màu, không mùi, và không phản ứng với nhiều chất khác. Nó là monomer chính được sử dụng để tạo ra nhựa Teflon thông qua quá trình polymer hóa.

  2. Phản Ứng Hình Thành Nhựa:

    • Phản ứng hình thành nhựa Teflon (PTFE) được mô tả qua công thức phản ứng:

      • CHCl3 + HF/SbF5 > CHF2Cl (700°C) > CF2=CF2 (peroxit) > (CF2-CF2)n

    • Trong đó:

      • CHCl3 là chloroform.

      • HF/SbF5 là hỗn hợp hydrofluoric acid và antimony pentafluoride.

      • CF2=CF2 là difluoroethylene, một dạng của tetrafluoroethylene.

      • (CF2-CF2)n là cấu trúc polymer của nhựa Teflon, với n là số lượng các đơn vị ghép lại.

  3. Quá Trình Polymer Hóa:

    • Quá trình polymer hóa chủ yếu xảy ra ở nhiệt độ cao, thường là 700°C. Nó bao gồm sự liên kết các đơn vị tetrafluoroethylene lại với nhau để tạo thành một chuỗi polymer dài và linh hoạt.

  4. Chloroform (CHCl3):

    • Chloroform được sử dụng làm một trong các nguyên liệu cho phản ứng, và nó tham gia vào quá trình tạo ra difluoroethylene.

  5. Difluoroethylene (CF2=CF2):

    • Difluoroethylene là một loại hydrocarbon có hai nhóm fluoro. Nó được tạo ra trong quá trình polymer hóa và là một phần quan trọng của cấu trúc của nhựa Teflon.

Quá trình này dẫn đến việc hình thành nhựa Teflon với cấu trúc polymer chống dính, chống ăn mòn, và chịu nhiệt độ cao.

 

8 Đặc Tính của Nhựa Teflon (PTFE)

  1. Hệ Số Ma Sát Thấp:

    • Hệ số ma sát của nhựa Teflon là 0.04, là một trong những giá trị thấp nhất trong các loại nhựa, giúp nó trở thành "Vua của ngành nhựa."

  2. Chống Ăn Mòn và Khả Năng Kháng Hóa Chất:

    • Nhựa Teflon có khả năng chống ăn mòn và không phản ứng với nhiều hóa chất mạnh như axit sulfuric đặc hoặc dung dịch bazơ.

  3. Độ Bền Cao và Bền Đối Với Môi Trường Khắc Nghiệt:

    • Nhựa Teflon có độ bền cao, không biến đổi trạng thái, không trở nên giòn hay xuống cấp khi ở trong môi trường lỏng. Nó giữ độ mềm khi đun sôi ở nhiệt độ cao nhất là 300°C và chịu được mọi điều kiện khắc nghiệt của môi trường.

  4. Không Cháy và Khả Năng Chống Oxy Hóa:

    • Nhựa Teflon là vật liệu không cháy và có chỉ số giới hạn oxy hóa dưới 90.

  5. Không Thấm Nước và Dầu:

    • Nó không thấm nước, không thấm dầu, và chống chịu tốt tác động của tia tử ngoại trong ánh sáng mặt trời.

  6. Không Bám Dính và Cơ Cấu Cứng Cực Tốt:

    • Nhựa Teflon không bám dính với dung sai cực chuẩn và có cơ cấu đội cứng cực tốt, giúp chế tạo các chi tiết đảm bảo an toàn và chắc chắn.

  7. Khả Năng Cách Điện Xuất Sắc:

    • Có khả năng cách điện tuyệt vời và không chịu ảnh hưởng từ môi trường có từ trường.

  8. An Toàn và Không Gây Hại Cho Sức Khỏe:

    • Thành phần cấu tạo của nhựa Teflon an toàn và không gây hại cho sức khỏe của người sử dụng, vì vậy nó được ứng dụng rộng rãi trong sản xuất các sản phẩm như gioăng làm kín trong van công nghiệp và trong các lĩnh vực như xử lý nước sạch, thực phẩm, và đồ uống.

Những đặc tính này giúp nhựa Teflon trở thành một vật liệu đa dụng và được sử dụng rộng rãi trong nhiều ngành công nghiệp và ứng dụng khác nhau.

 

Phân Loại Nhựa PTFE

  1. Nhựa PTFE Dạng Tấm:

    • Đặc Điểm:

      • Chịu mài mòn tốt, có hệ số ma sát thấp, không cần dầu mỡ, tự bôi trơn.

      • Thích hợp làm các loại gioăng tự bôi trơn, vòng đệm, bạc nhựa teflon, vòng bi, bánh răng.

      • Màu sắc trắng, tỷ trọng 2.42g/cm3.

      • Kích thước thông thường: 1000×1000 tinh, 1020×1020.

    • Ứng Dụng:

      • Tấm đệm gioăng mặt bích, bánh răng nhựa thay thế bánh răng kim loại, các loại căn nhựa chịu mài mòn làm kín trục.

  2. Nhựa PTFE Dạng Cây:

    • Đặc Điểm:

      • Có quy cách dạng cây hoặc thanh bên trong ruột đặc hoặc rỗng.

      • Màu trắng, tỷ trọng: 2.3 ~ 2.4 g/cm3.

      • Đường kính thông dụng từ Ø6 đến Ø200, chiều dài tiêu chuẩn là 1000mm.

    • Ứng Dụng:

      • Chế tạo xương nhân tạo, làm vật liệu tạo sụn cho ngoại khoa, chế tạo radar, vật liệu thông tin cao tần, thiết bị sóng ngắn.

  3. Nhựa PTFE Dạng Que/Ong:

    • Đặc Điểm:

      • Thiết kế ở giữa rỗng, thông suốt.

      • Ứng dụng trong y tế, dụng cụ cách điện, bộ lọc hiệu suất cao.

      • Độ bền và độ cứng không bằng dạng cây hoặc tấm.

    • Ứng Dụng:

      • Dụng cụ y tế, thiết bị cách điện, bộ lọc hiệu suất cao.

  4. Nhựa PTFE Dạng Phim:

    • Đặc Điểm:

      • Chiều dài 1000m, đường kính 0.03-3mm, màu trắng hoặc đen.

      • Mỏng, nhẹ, có thể cuộn lại dễ dàng.

      • Sử dụng trong cảm biến, máy phát điện, động cơ, máy đo lường, và bộ lọc không khí ở nhiệt độ cao.

    • Ứng Dụng:

      • Cảm biến, máy phát điện, động cơ, máy đo lường, bộ lọc không khí ở nhiệt độ cao.

 

Ứng Dụng Cụ Thể Của Nhựa Teflon (PTFE)

  1. Ngành Công Nghiệp Chế Biến, Sản Xuất Thực Phẩm, Đồ Uống, Dược Phẩm:

    • Sử dụng trong các thiết bị chế biến thực phẩm và dược phẩm do không chứa chất độc hại.

  2. Làm Lót Cho Các Phễu Chứa, Hộp Chứa, Máng Trượt:

    • Tăng khả năng trượt, giảm tắc nghẽn trong quá trình vận chuyển bằng trọng lực.

  3. Chế Tạo Chi Tiết Máy Như Ổ Trượt, Bạc Lót:

    • Được sử dụng trong chế tạo các chi tiết máy đòi hỏi độ ma sát thấp, không bám dính và khả năng chạy rà tốt.

  4. Gioăng Làm Kín Cho Van Công Nghiệp:

    • Chế tạo gioăng để tránh tình trạng rò rỉ lưu chất từ van công nghiệp.

  5. Các Bộ Phận Cách Điện, Dẫn Điện Trong Thiết Bị Điện Tử Công Nghiệp:

    • Sử dụng trong các bộ phận yêu cầu cách điện hoặc dẫn điện trong các thiết bị điện tử công nghiệp.

  6. Chế Tạo Thiết Bị, Dụng Cụ Đựng Mẫu Thí Nghiệm:

    • Sử dụng để chế tạo các thiết bị, dụng cụ đựng mẫu thí nghiệm cần lưu trữ ở nhiệt độ thấp.

  7. Ngành Hóa Chất Có Nồng Độ Cao:

    • Tráng các bể chứa hoặc chế tạo van và thiết bị đường ống do khả năng chịu axit, bazơ và nồng độ cao.

 

Tìm hiểu thêm bài viết: Giới Thiệu Về Nhựa : Phân Biệt Và Tìm Hiểu Công Dụng

Bạn có thể xem bài viết của Song Toan (STG)., JSC tại:

Chúc bạn có những trải nghiệm tuyệt vời với sản phẩm của Song Toàn (STG).

Valves và Ứng Dụng Công Cụ Kaizen Trong Cải Tiến Liên Tục

Admin Song Toàn
|
Ngày 19/06/2024

Câu nói "Có thêm một ngày là ta quyết trân quý và sử dụng ngày đó có hiệu quả" nhấn mạnh tầm quan trọng của việc sử dụng thời gian một cách khôn ngoan. Thời gian là tài sản quý giá nhất mà mọi người đều có như nhau, không phân biệt giàu nghèo, giới tính hay tuổi tác. Sức mạnh của thời gian nằm ở việc bạn sử dụng nó như thế nào.   Áp Dụng Kaizen Mỗi Ngày Kaizen, công cụ cải tiến liên tục của người Nhật, có thể áp dụng không chỉ trong các công ty lớn mà còn trong cuộc sống hàng ngày của bạn. Cải thiện 1% mỗi ngày sẽ mang lại kết quả ấn tượng theo thời gian. Hãy làm phép tính đơn giản: Cải thiện 1% mỗi ngày: 1.01^365 ≈ 37.78 Tệ hơn 1% mỗi ngày: 0.99^365 ≈ 0.0255 Sự khác biệt giữa hai lựa chọn này sau một năm là rất lớn, cho thấy sức mạnh của những thay đổi nhỏ mỗi ngày. Giới Thiệu Về Valve Valve là một thiết bị cơ khí quan trọng, dùng để điều khiển lưu lượng và áp suất của lưu chất trong hệ thống ống. Chúng có bốn chức năng chính: Đóng – mở dòng chảy Điều tiết lưu lượng Chống chảy ngược Điều chỉnh, tăng giảm áp Lịch Sử Ra Đời của Valve Valve đã xuất hiện từ thời đế chế La Mã năm 25 sau CN, sử dụng trong hệ thống dẫn nước. Vào thế kỷ 18, khi động cơ hơi nước ra đời, valve được cải tiến để chịu được áp suất lớn hơn. Đến năm 1890, áp suất cao nhất của valve là 200 psi. Đầu thế kỷ XX, valve thép ra đời và tiếp tục phát triển trong Thế Chiến II về áp suất, vật liệu và khả năng chống ăn mòn. Hiện nay, valve có thể đáp ứng đầy đủ nhu cầu của con người và sẽ còn phát triển hơn nữa trong tương lai. Cấu Tạo và Phân Loại Valve Valve thường gồm 8 bộ phận chính: Valve Body: Thân valve, chứa đựng tất cả các bộ phận bên trong. Valve Bonnet: Nắp valve, bảo vệ các bộ phận bên trong. Valve Trim: Các bộ phận bên trong valve, bao gồm đĩa, ghế và thân van. Valve Disk: Đĩa valve, điều khiển dòng chảy. Valve Seat: Ghế valve, nơi đĩa valve ngồi và tạo ra sự kín khít. Valve Stem: Thân valve, kết nối với bộ điều khiển. Valve Packing: Gioăng kín, ngăn chặn rò rỉ từ thân valve. Valve Actuator: Bộ điều khiển valve, có thể là tay quay, động cơ điện hoặc khí nén. Việc áp dụng Kaizen để cải thiện bản thân mỗi ngày là một chiến lược hiệu quả. Bạn đã nắm sơ bộ lịch sử ra đời của valve, định nghĩa, chức năng, phân loại và các bộ phận chính của valve. Hẹn gặp lại bạn trong các chia sẻ cụ thể về từng loại valve sau. Bạn có thể xem bài viết của Song Toan (STG)., JSC tại: linhkienphukien.vn phukiensongtoan.com songtoanbrass.com Chúc bạn có những trải nghiệm tuyệt vời với sản phẩm của Song Toàn (STG).

Xem thêm

Giải Mã Bí Ẩn Giãn Nở Nhiệt: Bảo Vệ Hệ Thống Đường Ống Hiệu Quả

Ha Tram
|
Ngày 29/05/2024

Hệ thống đường ống cần linh hoạt để hấp thụ sự giãn nở vì nhiệt, nếu không sẽ gây ra ứng suất lớn và ảnh hưởng đến hệ thống. Hai giải pháp thường được sử dụng để giải quyết vấn đề này là Expansion Joint và Expansion Loop. Expansion Joint Cấu Tạo: Bao gồm nhiều bộ phận như Tube, Cover, Fabric Reinforcing, Metal Reinforcing, Retaining ring, Mating flange và Control Rod. Hoạt Động: Hấp thụ sự giãn nở dọc trục bằng cách nén và kéo giãn các thành phần bên trong. Ưu Điểm: Tiết kiệm không gian, chống rung động. Nhược điểm: Chi phí đầu tư và bảo trì cao hơn, rủi ro rò rỉ. Ứng Dụng: Không gian hạn chế, chống rung động (khu vực ống khói, máy bơm). AA B B C C Expansion Loop Cấu Tạo: Gồm một đoạn ống uốn cong theo hình dạng vòng cung hoặc chữ S. Hoạt Động: Hấp thụ sự giãn nở dọc trục bằng cách thay đổi hình dạng của đoạn vòng. Ưu Điểm: Chi phí đầu tư và bảo trì thấp hơn, ít rủi ro rò rỉ. Nhược Điểm: Chiếm nhiều diện tích hơn. Ứng Dụng: Không gian rộng rãi, ưu tiên chi phí thấp. D D Lựa Chọn Giải Pháp Expansion Joint: Phù hợp khi: Không gian hạn chế, cần chống rung động, áp suất vận hành cao, rủi ro rò rỉ thấp. Expansion Loop: Phù hợp khi: Không gian rộng rãi, ưu tiên chi phí thấp, rủi ro rò rỉ thấp, không cần chống rung động Lưu Ý: Việc lựa chọn giải pháp cần dựa trên nhiều yếu tố như: kích thước đường ống, áp suất vận hành, nhiệt độ vận hành, loại lưu chất, môi trường xung quanh, v.v. Cần tính toán chính xác độ dài của Expansion Loop để đảm bảo hiệu quả hoạt động. Nên tham khảo ý kiến chuyên gia để lựa chọn giải pháp phù hợp nhất cho từng dự án cụ thể. Expansion Joint và Expansion Loop là hai giải pháp hiệu quả để giải quyết vấn đề giãn nở nhiệt trong hệ thống đường ống. Việc lựa chọn giải pháp phù hợp cần dựa trên các yếu tố kỹ thuật và yêu cầu cụ thể của từng dự án. Bạn có thể xem bài viết của Song Toan (STG)., JSC tại: linhkienphukien.vn phukiensongtoan.com songtoanbrass.com Chúc bạn có những trải nghiệm tuyệt vời với sản phẩm của Song Toàn (STG).

Xem thêm

Stub-In và Stub-On: Khác Biệt Nào Quan Trọng ?

Ha Tram
|
Ngày 22/05/2024

Stub-in và Stub-on là hai phương pháp phổ biến để kết nối ống nhánh vào đường ống chính, thường được sử dụng khi kích thước ống nhánh nhỏ hơn hoặc bằng 1 kích thước so với ống chính. Tuy nhiên, chúng có một số điểm khác biệt về cấu tạo, ưu điểm, nhược điểm và ứng dụng:   Cấu Tạo Stub - In Và Stub - On Stub-in:Ống nhánh được cắt vát và mài nhọn, sau đó được lắp trực tiếp vào bên trong lòng ống chính. Mối hàn được thực hiện bao quanh toàn bộ chu vi của ống nhánh, tạo ra một kết nối chắc chắn và kín khít. Stub-on: Ống nhánh được cắt vuông góc với trục của ống chính và được đặt bên ngoài.exclamationMối hàn chỉ được thực hiện ở mặt ngoài của ống nhánh, tạo ra một kết nối đơn giản hơn.   Ưu điểm Stub - In Và Stub - On Chung: Cả hai phương pháp đều chỉ cần một mối hàn, tiết kiệm thời gian và chi phí thi công so với sử dụng Tee fitting, cần ba mối hàn.expand_more Thiết kế nhỏ gọn, tiết kiệm không gian lắp đặt. Stub-in: Độ bền cao hơn do mối hàn bao quanh toàn bộ chu vi ống nhánh. Chịu được áp suất cao hơn và ứng dụng trong điều kiện khắc nghiệt hơn.exclamation   Nhược điểm Stub - In Và Stub - On Chung: Yếu hơn so với các phương pháp kết nối khác như hàn đối đầu hoặc hàn socket. Cần kiểm tra kỹ mối hàn để đảm bảo độ kín khít và an toàn. Stub-in: Khó thi công hơn do cần cắt vát và mài nhọn ống nhánh. Mối hàn có thể ảnh hưởng đến dòng chảy lưu chất nếu không thực hiện cẩn thận. Ứng dụng Stub - In Và Stub - On Stub-in: Thích hợp cho các đường ống quan trọng, chịu áp suất cao, hoặc hoạt động trong điều kiện khắc nghiệt. Sử dụng phổ biến trong hệ thống đường ống hóa chất, dầu khí, nhà máy điện,... Stub-on: Thích hợp cho các đường ống có áp suất thấp, lưu lượng thấp, hoặc không yêu cầu độ bền cao. Sử dụng phổ biến trong hệ thống đường ống nước, hệ thống tưới tiêu,... Lưu ý: Cả hai phương pháp Stub-in và Stub-on đều cần tuân thủ các yêu cầu trong ASME B31.3 để đảm bảo an toàn và hiệu quả. Việc lựa chọn phương pháp kết nối phù hợp phụ thuộc vào nhiều yếu tố như kích thước ống, áp suất, nhiệt độ, lưu chất, điều kiện vận hành,...   Stub-in và Stub-on là hai lựa chọn phổ biến cho việc kết nối ống nhánh vào đường ống chính. Mỗi phương pháp có ưu điểm và nhược điểm riêng, do đó, việc lựa chọn phương pháp phù hợp cần dựa trên các yếu tố kỹ thuật và yêu cầu cụ thể của từng ứng dụng.   Bạn có thể xem bài viết của Song Toan (STG)., JSC tại: linhkienphukien.vn phukiensongtoan.com songtoanbrass.com Chúc bạn có những trải nghiệm tuyệt vời với sản phẩm của Song Toàn (STG).

Xem thêm

Các Thiết Bị Và Phụ Kiện Đặc Biệt Trên Hệ Thống Đường Ống

Admin PKST
|
Ngày 08/05/2024

Chào các bạn, trong bài viết này, Song Toàn sẽ giới thiệu với các bạn một số thành phần đặc biệt trên hệ thống đường ống. Ngoài các loại fitting, valve, và các piping component mà trước đây ST đã giới thiệu, còn có một số thành phần đặc biệt khác cũng rất quan trọng. Hôm nay, ST sẽ chia sẻ với các bạn về những thành phần đặc biệt này.   Bird Screen: Thành Phần Quan Trọng Bảo Vệ Đường Ống Xả Bird screen là một thành phần đặc biệt được lắp đặt tại điểm cuối của các đường ống xả trực tiếp ra môi trường không khí (open air – atmosphere). Những đường ống này thường là các đường xả vent của bồn và bể chứa trong hệ thống công nghệ, có áp suất tương đối nhỏ hoặc bằng áp suất khí quyển. 1. Cấu Tạo của Bird Screen Bird screen chủ yếu được cấu tạo từ một tấm lưới. Thiết kế lưới này phải đảm bảo một không gian mở đủ lớn để không cản trở lưu lượng xả của đường ống kết nối trực tiếp. Các yếu tố cần xem xét trong cấu tạo bird screen bao gồm: Kích thước lưới: Thường nhỏ để ngăn chặn sự xâm nhập của côn trùng, chim, chuột và các loại động vật khác. Kích thước tổng thể: Bird screen thường được thiết kế lớn hơn kích thước đường ống để không trở thành vật cản tại điểm cuối của đường ống. 2. Mục Đích Sử Dụng Bird screen được sử dụng với mục đích chính là bảo vệ đường ống xả bằng cách ngăn chặn: Côn trùng: Như ong, muỗi, bọ, có thể chui vào và làm tổ bên trong đường ống. Chim: Như chim sẻ, chim bồ câu, có thể bay vào và gây tắc nghẽn. Chuột: Hoặc các loài gặm nhấm khác có thể xâm nhập và làm tổ. Vật cản khác: Ngăn chặn các vật thể lạ khác có thể gây bít đường ống và làm mất an toàn cho bồn, bể. 3. Lợi Ích của Bird Screen Bảo vệ hệ thống: Tránh tắc nghẽn và giảm nguy cơ hư hỏng do vật cản từ bên ngoài. Duy trì an toàn: Đảm bảo hệ thống hoạt động ổn định, không bị gián đoạn bởi các tác nhân bên ngoài. Tăng tuổi thọ hệ thống: Giảm thiểu các sự cố và bảo trì, từ đó tăng tuổi thọ cho hệ thống bồn và bể chứa. Bird screen là một thành phần nhỏ nhưng rất quan trọng trong việc bảo vệ hệ thống xả của bồn và bể chứa. Việc lựa chọn và lắp đặt bird screen đúng cách sẽ giúp ngăn chặn các yếu tố bên ngoài xâm nhập, bảo vệ hệ thống và đảm bảo an toàn trong quá trình vận hành.   Flame Arrester: Thiết Bị Chống Cháy Ngược Flame arrester, hay còn gọi là thiết bị chống cháy ngược, là một thành phần quan trọng được lắp đặt gần các điểm cuối của đường ống xả vent. Flame arrester giúp ngăn chặn nguy cơ cháy nổ bằng cách ngăn chặn các tác nhân gây cháy từ bên ngoài xâm nhập vào bên trong hệ thống. 1. Vị Trí Lắp Đặt và Chức Năng Flame arrester thường được lắp trên các đường ống chứa khí hoặc hơi của các chất dễ cháy như hydrocarbon, diesel. Chất lưu thường đi qua flame arrester trước khi đến bird screen ở cuối đường ống. Mục đích chính của flame arrester là: Ngăn chặn tác nhân gây cháy: Các tác nhân như sấm sét, tia lửa, hoặc đám cháy bên ngoài có thể gây nguy hiểm cho bồn và bể chứa, cũng như các thiết bị trong hệ thống. Bảo vệ hệ thống: Ngăn ngừa nguy cơ cháy nổ bằng cách không cho ngọn lửa từ bên ngoài đi ngược vào trong hệ thống xả. 2. Cấu Tạo của Flame Arrester Flame arrester có cấu tạo đơn giản nhưng hiệu quả, bao gồm: Mặt bích kết nối (flange): Kết nối thiết bị với đường ống xả. Thân của flame arrester: Chứa thành phần chính là arrester element. Arrester element: Thành phần chính ngăn chặn ngọn lửa từ bên ngoài. Arrester element được tạo thành từ các khoan nhỏ li ti bằng kim loại chịu nhiệt cao. Các khoan nhỏ này có chức năng ngăn cản ngọn lửa và làm mát khí nóng trước khi chúng có thể xâm nhập vào bên trong hệ thống. 3. Nguyên Lý Hoạt Động Khi có ngọn lửa hoặc tác nhân gây cháy từ bên ngoài, arrester element sẽ: Ngăn chặn ngọn lửa: Các khoan nhỏ li ti trong arrester element làm nhiệm vụ ngăn cản trực tiếp ngọn lửa, không cho chúng xâm nhập vào hệ thống. Làm mát khí nóng: Giảm nhiệt độ của khí nóng, ngăn chặn sự lan truyền của ngọn lửa vào bên trong. 4. Lợi Ích của Flame Arrester Bảo vệ an toàn: Giảm nguy cơ cháy nổ, bảo vệ bồn, bể chứa và các thiết bị trong hệ thống. Độ bền cao: Được làm từ kim loại chịu nhiệt, flame arrester có độ bền cao và khả năng chịu nhiệt tốt. Dễ lắp đặt và bảo trì: Cấu tạo đơn giản giúp việc lắp đặt và bảo trì flame arrester dễ dàng và nhanh chóng. Flame arrester là một thiết bị quan trọng trong việc bảo vệ hệ thống xả của các bồn, bể chứa chất dễ cháy. Việc lắp đặt flame arrester đúng cách sẽ giúp ngăn chặn nguy cơ cháy nổ, bảo vệ an toàn cho hệ thống và đảm bảo quá trình vận hành được diễn ra ổn định.   Inline Mixer: Thiết Bị Trộn Hóa Chất Hiệu Quả Inline mixer là một thiết bị được sử dụng để trộn hóa chất trực tiếp trong dòng chảy của hệ thống đường ống. Thiết bị này thường được lắp đặt kèm với một đường bơm hóa chất, với điểm bơm hóa chất đặt phía trước (upstream) theo chiều dòng chảy so với inline mixer. 1. Cấu Tạo của Inline Mixer Inline mixer có cấu tạo khá đơn giản nhưng rất hiệu quả, bao gồm: Lá thép không gỉ: Thường được sử dụng do khả năng chống ăn mòn và độ bền cao. Rảnh xoắn trong lòng ống: Các lá thép được xếp lại tạo thành những rảnh xoắn, giúp thay đổi đặc tính dòng chảy từ liên tục sang rối. 2 Nguyên Lý Hoạt Động Khi lưu chất (chất lỏng hoặc khí) đi qua inline mixer, các rảnh xoắn trong lòng ống tạo ra dòng chảy rối, giúp: Tăng cường trộn hóa chất: Hóa chất được bơm vào trước inline mixer sẽ được trộn đều nhờ dòng chảy rối, đảm bảo hòa tan nhanh chóng và hiệu quả. Ngăn chặn phân lớp: Dòng chất lưu không bị phân lớp trong quá trình di chuyển, đảm bảo tính đồng nhất của hỗn hợp. 4. Lợi Ích của Inline Mixer Hiệu quả trộn cao: Inline mixer đảm bảo hóa chất được trộn đều và nhanh chóng vào dòng chảy chính. Thiết kế đơn giản: Cấu tạo dễ lắp đặt và bảo trì, không yêu cầu nhiều không gian. Vật liệu bền bỉ: Sử dụng thép không gỉ giúp tăng tuổi thọ và độ bền của thiết bị. 5. Ứng Dụng của Inline Mixer Inline mixer được sử dụng rộng rãi trong nhiều ngành công nghiệp, bao gồm: Ngành hóa chất: Trộn các loại hóa chất khác nhau vào dòng chảy chính. Ngành thực phẩm và đồ uống: Đảm bảo các thành phần được trộn đều. Ngành dầu khí: Hòa tan các chất phụ gia vào dòng dầu hoặc khí. Inline mixer là một thiết bị quan trọng trong việc trộn hóa chất vào dòng chảy chính của hệ thống đường ống. Với cấu tạo đơn giản nhưng hiệu quả, inline mixer giúp cải thiện quá trình hòa tan và ngăn chặn sự phân lớp của lưu chất, đảm bảo tính đồng nhất và hiệu quả trong quá trình vận hành.   Bạn có thể xem bài viết của Song Toan (STG)., JSC tại: linhkienphukien.vn phukiensongtoan.com songtoanbrass.com Chúc bạn có những trải nghiệm tuyệt vời với sản phẩm của Song Toàn (STG).

Xem thêm

Bolting: Chia Sẻ Kinh Nghiệm và Bài Học Hữu Ích

Admin Song Toàn
|
Ngày 04/04/2024

  Bu lông (Bolting), dường như là một phần nhỏ bé nhất trong hệ thống đường ống, nhưng thực tế, vai trò của chúng không hề nhỏ chút nào. Bu lông, đặc biệt là stud bolt, đóng vai trò quan trọng trong việc làm kín các mối nối mặt bích, kết nối các thiết bị và cố định các đường ống. Chúng là yếu tố quan trọng giúp hệ thống đường ống hoạt động một cách an toàn và hiệu quả. Một lỗi nhỏ trong quá trình sử dụng bu lông có thể gây ra những hậu quả nghiêm trọng cho toàn bộ hệ thống, đặc biệt là đe dọa đến tính mạng và sức khỏe của con người. Hôm nay, chúng ta sẽ cùng nhau tìm hiểu và rút ra những bài học quý báu từ các dự án EPC / EPCI liên quan đến bu lông. Điều này giúp mọi người hiểu sâu hơn về vấn đề này và nâng cao kiến thức về hệ thống đường ống.   Lựa Chọn Vật Liệu Bolting Việc lựa chọn vật liệu bolting là một phần quan trọng trong quá trình thiết kế hệ thống đường ống, và nó phụ thuộc vào nhiều yếu tố như đặc tính của chất lưu chất, vật liệu của đường ống, yêu cầu kỹ thuật, và yêu cầu về môi trường làm việc. Dưới đây là một số loại vật liệu bolting phổ biến được sử dụng trong các dự án và ứng dụng khác nhau: ASTM A193 Gr. B7 / ASTM A194 Gr. 2H ASTM A193 Gr.B7M / ASTM A194-2HM ASTM A320 Gr. L7 / ASTM A194 Gr. 7 ASTM A320 Gr. L7M / ASTM A194 Gr. 7M ASTM A320 Gr. L7 / ASTM A194 Gr. 7L ASTM A320 Gr. L7M / ASTM A194 Gr. 7ML ASTM A453 Gr. 660 Class D / ASTM A453 Gr. 660 Class D ASTM A276 UNS S32760   Trong quá trình lựa chọn vật liệu bolting, cần phải tạo điều kiện cho sự hợp tác giữa kỹ sư vật liệu và kỹ sư piping để đảm bảo rằng vật liệu bolting được chọn đáp ứng được yêu cầu kỹ thuật và an toàn. Một số điểm cần lưu ý khi lựa chọn vật liệu bolting: Đơn giản hóa Cần phải tối giản hóa số lượng nhóm vật liệu bolting để tránh tình trạng quá nhiều loại bolt dẫn đến khó khăn trong quản lý và tăng chi phí mua sắm. Việc sử dụng các loại bolt có thể áp dụng cho nhiều loại vật liệu đường ống khác nhau là một phương pháp hiệu quả để giảm thiểu số lượng nhóm vật liệu bolting. Sự phối hợp Cần phối hợp chặt chẽ với kỹ sư vật liệu và chủ đầu tư để đảm bảo sự đồng thuận về vật liệu bolting được sử dụng. Việc này đặc biệt quan trọng khi sử dụng vật liệu bolting có thể áp dụng cho nhiều loại vật liệu đường ống khác nhau. Tối ưu hóa Cần cân nhắc các yếu tố kỹ thuật và kinh tế để chọn ra vật liệu bolting phù hợp nhất cho dự án. Việc này đòi hỏi sự đánh giá cẩn thận về hiệu suất, tính năng, và chi phí của từng loại vật liệu bolting. Thông qua sự hợp tác và cân nhắc kỹ lưỡng, việc lựa chọn vật liệu bolting sẽ đảm bảo tính an toàn và hiệu quả của hệ thống đường ống. Chiều Dài Của Bolting Chiều dài của bolting thường được xác định dựa trên kích thước tiêu chuẩn của bolt như trong ASME B16.5. Sau khi siết, bolt thường sẽ dư ra từ 1-2 ren ở cả hai đầu. Trong một số trường hợp: Độ dày của mặt bích không tuân thủ theo ASME B16.5 do các yếu tố thiết kế đặc biệt (như GRE, Pressure Safety Valve, Thermowell, transmitter, v.v...), dẫn đến việc phải điều chỉnh chiều dài của bolting. Với các bolt kích thước lớn (từ 1.1/8” trở lên), thường áp dụng phương pháp tensioning để siết bolt thay vì sử dụng hydraulic wrench torque. Để tensioner có thể chụp vào và kéo bolt lên, cần phải có một khoảng trống ren dư. Vì vậy, chiều dài của bolting cần phải bao gồm một khoảng extra bằng chiều cao của nut để tensioning. Ngoài ra, đầu socket cần phải có không gian để chụp vào nut để siết bolt, điều này cần được xem xét trong thiết kế để tránh khó khăn trong thi công và sửa chữa tại công trường sau này.   Chiều dài của bolting cần phải điều chỉnh linh hoạt, không nên ràng buộc trong một công thức cố định. Ví dụ, ở những vị trí mà flange và elbow được hàn trực tiếp vào nhau, việc cộng thêm chiều dài bolting một khoảng bằng chiều cao của nut có thể dẫn đến tình trạng clashing hoặc không thể lắp đặt hoặc rút bolt ra. Đặc biệt Ở các vị trí có insulation gasket, bolting dễ bị thiếu ren do chiều dày của các steel washer và insulation washer là lớn, khoảng 4mm. Cần phải chú ý đặc biệt ở các bolt joint có sử dụng gasket là insulation gasket. Ngoài ra, nếu insulation gasket được sử dụng ở các vị trí của pressure safety valve (PSV) mà bolting khác vật liệu với PSV, cần phải có insulation washer ở phía mặt bích của PSV. Tuy nhiên, việc này thường bị bỏ qua và dẫn đến tình trạng clashing giữa bolt và thân PSV, không thể lắp đặt insulation washer. Để tránh tình trạng bolting quá dài hoặc ngắn, cần thực hiện kiểm tra kỹ lưỡng, đặc biệt là với các bolt size lớn và trong không gian lắp đặt bolt 3D. Chiều dày của các thành phần mà bolting sẽ siết qua cũng cần được xem xét thông qua bản vẽ tổng quát (General Drawing). Vật Liệu Coating Cho Bolting   Trên thị trường, có hai loại coating phổ biến cho bolting là Zn plating + PTFE và Hot Dip Galvanized. Mỗi loại coating có ưu và nhược điểm riêng. Tuy nhiên, xu hướng thị trường cho thấy Zn plating + PTFE đang được ưa chuộng hơn. Điểm mạnh của phương pháp Zn Plating + PTFE là lớp Zn plating chống ăn mòn kết hợp với lớp PTFE giảm ma sát, giúp quá trình siết bolt trở nên dễ dàng hơn mà không cần sử dụng thêm phụ gia. Phương pháp Hot Dip Galvanized thường có độ ma sát cao, do đó cần phải yêu cầu nhà máy bôi thêm lớp lubricant để giúp việc siết bolt trở nên dễ dàng hơn. Trên đây là một số chia sẻ kinh nghiệm về bolting để bạn có thêm thông tin và lựa chọn phù hợp cho dự án của mình. Bạn có thể xem bài viết của Song Toan (STG)., JSC tại: linhkienphukien.vn phukiensongtoan.com songtoanbrass.com Chúc bạn có những trải nghiệm tuyệt vời với sản phẩm của Song Toàn (STG).  

Xem thêm

NHẬP THÔNG TIN KHUYẾN MÃI TỪ CHÚNG TÔI

Giỏ hàng